Compute the marginal probability map from a graph. The computation uses the forward backward algorithm. For more details, see section 2.3.2 of Nussbaumer et al. (2023b) and the GeoPressureManual.
Arguments
- graph
a GeoPressureR
graphwith defined movement modelgraph_set_movement().- quiet
logical to hide messages about the progress.
Value
A list of the marginal maps for each stationary period (even those not modelled). Best to
include within tag.
References
Nussbaumer, Raphaël, Mathieu Gravey, Martins Briedis, Felix Liechti, and Daniel Sheldon. 2023. Reconstructing bird trajectories from pressure and wind data using a highly optimized hidden Markov model. Methods in Ecology and Evolution, 14, 1118–1129 https://doi.org/10.1111/2041-210X.14082.
See also
Other graph:
graph_create(),
graph_most_likely(),
graph_set_movement(),
graph_simulation(),
print.graph()
Examples
withr::with_dir(system.file("extdata", package = "GeoPressureR"), {
tag <- tag_create("18LX", quiet = TRUE) |>
tag_label(quiet = TRUE) |>
twilight_create() |>
twilight_label_read() |>
tag_set_map(
extent = c(-16, 23, 0, 50),
known = data.frame(stap_id = 1, known_lon = 17.05, known_lat = 48.9)
) |>
geopressure_map(quiet = TRUE) |>
geolight_map(quiet = TRUE)
})
# Create graph
graph <- graph_create(tag, quiet = TRUE)
# Define movement model
graph <- graph_set_movement(graph)
# Compute marginal
marginal <- graph_marginal(graph)
#> ℹ Compute movement model
#> ✔ Compute movement model [938ms]
#>
#> ℹ Compute marginal
#> ✔ Compute marginal [135ms]
#>
#> ✔ All done
plot(marginal)
