Compute the marginal probability map from a graph. The computation uses the forward backward algorithm. For more details, see section 2.3.2 of Nussbaumer et al. (2023b) and the GeoPressureManual.
Arguments
- graph
a GeoPressureR
graph
with defined movement modelgraph_set_movement()
.- quiet
logical to hide messages about the progress.
Value
A list of the marginal maps for each stationary period (even those not modelled). Best to
include within tag
.
References
Nussbaumer, Raphaël, Mathieu Gravey, Martins Briedis, Felix Liechti, and Daniel Sheldon. 2023. Reconstructing bird trajectories from pressure and wind data using a highly optimized hidden Markov model. Methods in Ecology and Evolution, 14, 1118–1129 https://doi.org/10.1111/2041-210X.14082.
See also
Other graph:
graph_create()
,
graph_most_likely()
,
graph_set_movement()
,
graph_simulation()
,
print.graph()
Examples
withr::with_dir(system.file("extdata", package = "GeoPressureR"), {
tag <- tag_create("18LX", quiet = TRUE) |>
tag_label(quiet = TRUE) |>
twilight_create() |>
twilight_label_read() |>
tag_set_map(
extent = c(-16, 23, 0, 50),
known = data.frame(stap_id = 1, known_lon = 17.05, known_lat = 48.9)
) |>
geopressure_map(quiet = TRUE) |>
geolight_map(quiet = TRUE)
})
# Create graph
graph <- graph_create(tag, quiet = TRUE)
# Define movement model
graph <- graph_set_movement(graph)
# Compute marginal
marginal <- graph_marginal(graph)
#> ℹ Compute movement model
#> ✔ Compute movement model [908ms]
#>
#> ℹ Compute marginal
#> ✔ Compute marginal [223ms]
#>
#> ✔ All done
plot(marginal)