This function create a GeoPressureR map
object from a spatio-temporal dataset.
The data needs to be discretized according to scale
, extend
(space) and stap
(time).
This functions is used by geopressure_map
and graph_marginal
.
Arguments
- data
list of matrices of the same size, one for each stationary period.
- extent
geographical extent of the map on which the likelihood and graph model will be computed. Vector of length 4
c(xmin, xmax, ymin, ymax)
orc(W, E, S, N)
.- scale
number of pixels per 1° latitude-longitude. For instance,
scale = 10
for a resolution of 0.1° (~10km) andscale=4
for a resolution of 0.25° (~30km). To avoid interpolating the ERA5 data, the scale should be equal to or smaller than 10. Read more about scale on the Google earth Engine documentation .- stap
a data.frame of stationary periods.
- id
unique identifier of a tag.
- type
type of data one of
"unknown"
,"pressure"
,"light"
,"pressure_mse"
,"water_mask"
,"pressure_mask"
,"marginal"
. Allows for custom colour palette on plot.
Examples
data <- lapply(1:10, \(x) matrix(runif(5000), nrow = 50, ncol = 100))
scale <- 10
extent <- c(0, 10, 0, 5)
seq(as.Date("2023-01-01"), as.Date("2023-01-10"), by = "day")
#> [1] "2023-01-01" "2023-01-02" "2023-01-03" "2023-01-04" "2023-01-05"
#> [6] "2023-01-06" "2023-01-07" "2023-01-08" "2023-01-09" "2023-01-10"
stap <- data.frame(
stap_id = 1:10,
start = seq(as.POSIXct("2023-01-01", tz = "UTC"),
as.POSIXct("2023-01-10 UTC", tz = "UTC"),
by = "day"
),
include = TRUE
)
stap$end <- stap$start + sample(1:10) * 10000
# Create the map
map <- map_create(
data = data,
extent = extent,
scale = scale,
stap = stap,
id = "18LX",
type = "pressure"
)
print(map)
#>
#> ── GeoPressureR `map` object of pressure for 18LX ─────────────────────────────
#>
#> ── Map
#> • Extent (W, E, S, N): 0°, 10°, 0°, 5°
#> • Dimensions (lat x lon): 50 x 100 (res. 0.1°)
#>
#> ── Stationary periods stap (n=10)
#> Run `map$stap` to display full table
plot(map)